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v Relevant information on the BG/Q
v How you can optimize your code for the BG/Q
v Q&A

-~ Argonne Leadership N e
Computing Facility NN




Optimizing for Blue Gene/Q

-~ Argonne Leadership RN
Computing Facility N



Optimizing for Blue Gene/Q

-~ Argonne Leadership RN
Computing Facility NN



What programs do...
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Read data from memory
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Compute using that data
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Write results back to memory
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Communicate with other nodes and the outside world
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How fast can you go...

The speed at which you can compute is bounded by:

(the clock rate of the cores) x (the amount of parallelism you can exploit)
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Types of parallelism

v Parallelism across nodes (using MPI, etc.)

v Parallelism across sockets within a node [Not applicable to the BG/Q]

v Parallelism across cores within each socket

v Parallelism across pipelines within each core (i.e. instruction-level parallelism)
v Parallelism across vector lanes within each pipeline (i.e. SIMD)

v Using instructions that perform multiple operations simultaneously (e.g. FMA)
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There is only one socket
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Image source: https://computing.linl.gov/tutorials/linux_clusters/
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There is only one socket
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Image source: https://computing.linl.gov/tutorials/linux_clusters/ A BG /Q N Od e h as:
v 1 PowerPC A2Q CPU
v 16 GB DDR3 DRAM
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There are 16 cores per node
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There are 16 cores per node
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There are two pipelines per core

¢ Instruction Decode Queue
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There are two pipelines per core
WO PIpet] P PowerPC A2 Core:
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There are four hardware threads per core
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You must have at least two threads (or processes)
per core to efficiently use the BG/Q!
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Vectorization: The Quad-Processing eXtension (QPX)
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Vectorization: The Quad-Processing eXtension (QPX)

v On the BG/Q, only QPX vector instructions are supported!
v Only <4 x double>, <4 x float> and <4 x bool> operations are provided.

v The only advantage of single precision over double precision is decreased memory bandwidth/footprint.
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...
Fused Multiply Add Instructions (FMA)

There are some FP (vector) instructions that combine both a multiply and an add/subtract into one instruction!

Many variants like these:

And a few like these with built-in permutations:

_ _ - - - ~
- ~ ~ ~
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Putting it all together...

Peak FLOPS: (1.66 GHz) x (16 cores) x (4 vector lanes) x (2 operations per FMA) = 212.48 GFLOPS/node.
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The L1 cache and Prefetcher

Cross Bar Switch

/

v Each core has its own L1 cache and L1 Prefetcher (L1P)

v L1 Cache:
v Data: 16 KB, 8-way set associative, 64-byte cache lines, 6-cycle latency
v Instruction: 16 KB, 4-way set associative, 3-cycle latency

v L1 Pefetcher (L1P):
v 32 buffer entries, 128 bytes each, 24 cycle latency

v Buffer is write back
v Operates in list or stream mode (stream mode is the default)
v By default, tracks 10 streams x 3 128-byte cache lines deep
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]
The L2 cache and DRAM

v L2 Cache:
« Shared by all cores, divided into 16 slices o
v 32 MB total, 2 MB per slice - o

v 16-way set associative, 128-byte lines, write-back, 82-cycle latency

DRAM 0

v Prefetches from DRAM based on L1P requests

v Supports direct atomic operations
v Supports multiversioning (for transactional memory)
v Clocked at 800 MHz (half of the CPU rate)
v Read: 32 bytes/cycle, Write: 16 bytes/cycle

» DRAM:
v Two on-chip memory controllers, each connected to 8 L2 slices
v Each controller drives a 16-byte DDR-3 channel at 1.33 Gb/s
v The peak bandwidth is 42.67 GB/s (excluding ECC)

v The latency is > 350 cycles
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Odds and Ends

The A2 core uses in-order dispatch, with one exception: There is an 8-entry load miss queue (LMQ) that
holds loads and prefetches that miss the L1 cache, shared by all threads. Upon an L1 cache miss, the
issuing thread does not actually stall until a use of the load is encountered.

Try not to request the same L1 cache line more than once (especially relevant when using software
prefetching); the second request will stall the thread until the first request is satisfied.

The L2 cache is write-through (so writing to a cache line knocks it out of cache), so avoid writing to memory
from which you soon expect to read. Unlike commodity hardware, which uses write-back caches, making
write locality important, write locality is essentially irrelevant on the BG/Q.

For a mispredicted branch, there is a minimum penalty of 13 cycles.

If you need to compute 1/x (and don't need the exact IEEE answer) or 1/sqrt(x), QPX provides reciprocal
estimate and reciprocal sqrt estimate functions. Combined with a Newton iteration or two, these give nearly-
exact answers and are much less expensive than alternative methods.

There is a timebase register on the A2 core which provides exact cycle counts. If you're trying to time

- something, use it!
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An example...

void foo(double * restrict a, double * restrict b, etc.) {
#pragma omp parallel for
for (i=0;i<n; ++i){

a[i] = e[i*(b[i]*c[i] + dIi]) + f[il;

m(i] = q[il*(n[i]*o[i] + p[i]) + rfi];

Split the loop

void foo(double * restrict a, double * restrict b, etc.) {
#pragma omp parallel for
for (i=0;i<n;++i){

a[i] = e[i*(bli*c[i] + d[i]) + f]i;
}

#pragma omp parallel for
for (i=0;i<n;++i){

} m[i] = q[iI*(n[i]"o{i] + p[i]) + r[il;
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An example...

void foo(double * restrict a, double * restrict b, etc.) {
#pragma omp parallel for
for (i=0;i<n;++i){

a[i] = e[i*(bli*c[i] + d[i]) + f]i;
}

#pragma omp parallel for

for (i=0;i<n;++i){

m(i] = q[il*(n[i]*o[i] + pli]) + rfi; _ _ _

} void foo(double * restrict a, double * restrict b, etc.) {

} #pragma omp parallel
{

#pragma omp for

for (i=0;i<n;++i){

a[i] = e[i*(bli*c[i] + d[i]) + f]i;
}

(don't actually split the parallel region) #pragma omp for
for (i=0;i<n; ++i) {

} mli] = q[iI*(n[i]*ofi] + p[i]) + r[il;

}
}
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An example...

void foo(double * restrict a, double * restrict b, etc.) {
#pragma omp parallel

{
#pragma omp for
for (i=0;i<n;++i){
ali] = e[il*(b[i]*c[i] + d[i]) + f[i;
}

Unroll (interleaved) by a factor of 3.

}
This will require up to
3*5 == 15 QPX registers,
but we have 32 of them.

void foo(double * restrict a, double * restrict b, etc.) {
#pragma omp parallel
{
#pragma omp for
#pragma unroll(3)
for (i=0;i<n;++i){
a[i] = e[i]*(b[i]*c(i] + d[i]) + f[i];
}
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An example...

void foo(double * restrict a, double * restrict b, etc.) {
#pragma omp parallel
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#pragma omp for
#pragma unroll(3)
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An example...

void foo(double * restrict a, double * restrict b, etc.) {
#pragma omp parallel

{
#pragma omp for
#pragma unroll(3)
for (i=0;i<n; ++i){

a[i] = e[i]*(bli*c[i] + d[i]) + f]il;
}
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...
Compiling
When compiling your programs, please use our MPI wrappers (these are the softenv keys)...

(generally best performance)

v +mpiwrapper-xl.legacy

v +mpiwrapper-xI

v +mpiwrapper-bgclang.legacy

v +mpiwrapper-bgclang
v +mpiwrapper-gcc.legacy

v +mpiwrapper-gcc

(generally worst performance)
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Compiling

Basic optimization flags...

v -O3 — Generally aggressive optimizations (try this first: it is typically the best tested of all compiler
optimization levels)

v -g — Always include debugging symbols (really, always! - when your run crashes at scale after
running for hours, you want the core file to be useful)

v -gsmp=omp (xI) -fopenmp (bgclang and gcc) — Enable OpenMP (the pragmas will be ignored
without this)

v -gnostrict (xI) -ffast-math (bgclang and gcc) — Enable “fast” math optimizations (most people don't
need strict IEEE floating-point semantics). x| enables this by default at -O3 and above and you
need to pass -gstrict to turn it off.
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ESSL

IBM provides ESSL.: A library of optimized math functions (BLAS for linear algebra, FFTs, and more). For
FFTs, there is an optional FFTW-compatible interface.

v ESSL is installed in /soft/libraries/essl/current
v You can choose either -lesslbg or -lesslsmpbg (the 'smp' version uses OpenMP internally to take

advantage of multiple threads)
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Memory partitioning

Using threads vs. multiple MPI ranks per node: it's about...

v Memory
v Sending data between ranks on the same node often involves “unnecessary” copying
v Similarly, your application may need to manage “unnecessary” ghost regions
« MPI (and underlying components) have data structures that grow linearly (at best) with the total
number of ranks
v And Memory
v When threads can work together they can share resources instead of competing (cache, memory
bandwidth, etc.).
v Each process only gets 16GB / (ranks per node) memory
v And parallelism

v You'll likely see the best overall results from the scheme that exposes the most parallelism
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Our network is fast...

Each A/B/C/D/E link bandwidth: 4 GB/s

<

<

Bisection bandwidth (32 racks): 13.1 TB/s

<

HW latency
v Best: 80 ns (nearest neighbor)

v Worst: 3 us (96-rack 20 PF system, 31 hops)

<

MPI latency (zero-length, nearest-neighbor): 2.2 us
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And finally, be kind to the file system...

v Use MPI /O (there'll be a talk on this later), use collective I/O if the amounts being written are small
v Give each rank its own place within the file to store its data (avoid lock contention)
v Make sure you can validate your data (use CRCs, etc.), and then actually validate it when you read it

(We've open-sourced a library for computing CRCs: http://trac.alcf.anl.gov/projects/hpcrc64/)

And use load + broadcast instead of reading the same thing from every rank...

v Static linking is the default for all BG/Q compilers... loading shared libraries from tens of thousands of

ranks may not be fast
v The same is true for programs using embedded scripting languages... loading lots of small script files

from tens of thousands of ranks is even worse
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Some final advice...

Don't guess! Profile! (We'll have several talks about how to do that.) Your performance bottlenecks on the
BG/Q might be very different from those on other systems.

And don't be afraid to ask questions... ? Any questions?
|
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